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THE MATHEMATICAL FOUNDATION AND THE BOUNDARY
CONDITIONS ENCOUNTERED IN LASER ENERGY DIFFUSION IN
A SOLID AND SKIN SIMULANT TEMPERATURE RISE

1. Introduction

The diffusion of energy from a laser beam is a very important process in laser physics
and relates to a great many areas of application of a laser, from the protection of skin
and eye of personnel against such radiation and the many applications in medical
science of a low energy laser, to laser welding, laser cutting and the like by a high
power laser, not to mention the role the energy diffusion plays in the very high power
laser-induced thermal nuclear fusion.

As the diffusion of beam energy relates to so many areas of laser applications, the
problem was critically analyzed, and the solutions were calculated for a skin simulant
exposed to laser radiation with exposures ranging from 10 seconds to 20 microseconds.

As will be seen in the following sections, the solutions involve two sets of boundary
conditions which are contradicting to each other. This then leads to the fundamental
questions regarding the boundary conditions of laser energy diffusion, the thermody-
namics and the diffusion equation itself.

2. Thermal Diffusion and Boundary Conditions

The diffusion of heat in a solid is given by the thermal diffusion equation

cpaa—jt1 - KV’T =0 (1)

where: T = temperature at (x,y,z,t)
t = time
p = density of the solid
¢ = specific heat capacity of the solid
K = thermal conductivity of the solid




V2= Laplacian operator

In a number of cases, one can simplify the diffusion Eq(1) to diffusion in one

dimension.
Thus,
— —-K— = 2
cp — =0 (2)

For a one-dimensional irradiation say, with a laser beam, one can further approximate
the situation as an energy stream flowing into a semi-infinite solid.
Two boundary conditions are to be satisfied in such a case. One is that at the far

end of the solid, there will be no temperature rise, i.e.,
T=0 3)

when z — o

Here and in Eq (2), T will from now on denote the temperature rise, i.e., the initial
temperature of the solid is taken to be constant with respect to time ¢t and position
z. The other boundary condition is that at the surface of irradiation. One way of
tackling the problem is simply to equate the energy flux density of the irradiation to

the expression of heat flow at the surface inside the solid,

oT
@0 = —K %5 lo=o (4)

at z = 0.

We will call this the constant surface heat flux solution!—3.

Theory of differential equations then says that Eq (2) together with the boundary
conditions (3) and (4) will determine the values of T at any space-time point (x,t).
The physical properties of the material of the solid K, c and p enter into the problem
via Eq (2).




3. Boundary Conditions for an Irradiating Laser Beam

For irradiation with a laser beam, equating the energy flux of the beam to the heat
flow is not very convincing. For example, if the solid is transparent for that particular
radiation, there is then no energy absorption from the beam, and hence there will be
no temperature rise. Thus, absorption has to be taken into consideration.

For a medium with an absorption coeflicient ¢, the beam with energy flux density
®, passing through it will be attenuated as:

9

or

& = Goe™™ (6)

for the path length 1.

The energy absorbed will eventually turn into heat in the medium . The thermal

diffusion equation , instead of Eq(1), will then be:

oT
Py = KV?T +Q (7)

where @ is the energy absorbed per unit volume per unit time, or in the one dimen-

sional case,

oT o*T 0%

5 = K57 % (8)

or

PT 10T _ ad

0z kot K

where k = %% is the thermal diffusivity of the solid.

e (9)

The boundary condition at the far end will be the same as before,
T=0 (10)

when z — o0.




At the surface of irradiation, there is no heat flow

or
~K5-=0 (11)

at z = 0.
4. The Zero Surface Heat Flux Solution

Eq (11) is at variance with the boundary condition Eq (4). In order to appreciate
the meaning of these two different formalisms, one may want to see how Eq (8) or
(9) is arrived at. This will be given in another report together with its solution. For
now, we write down the solution of Eq (9) with boundary conditions (10) and (11)

as follows (@ is the energy flux density of the laser beam):

: _m
2vkt Ko

1 (I)o 2t xr
—— e¥Kt—az $ —
+2Ka e erfe [a\//s— 2\/5—1‘}

a2nt+az:. ¢ z 12
e erfc[a\/ﬂ—+2m} (12)

e—Ol$

T(z,t) = ‘—2—% kt.zer fc

L1
2Ka’

where
terfey = /oo er fetdt (13)
\ v

and erfct is the complimentary error function

2 X 2 -1
erfet = ﬁ/t e du=1—erft (14)
2t _e
CTft = ﬁ[) € du (15)

For irradiation of duration 7,the temperature rise for 0< ¢ < oo will be given by

AT =U(t).T(z,t) - U(t — 7).T(z,t — z) (16)




where T(x,t) is the function T(x,t) given by Eq. (12), and U(t),U(t-7) =Heaviside
functions at t and t-7.

In the original solution®® (no derivation was given) of Eq (12) a factor a in the
denominator of their third term was missing?. We verified that Eq (12) is the correct

solution.

5. Computations for a Skin Simulant - Long Duration Pulse

With the aid of a computer, the solution Eq (12) and Eq. (16), can be computed for
different cases. For skin simulant, the results obtained may be characterized by two
groups: (1) with exposure to the laser from a few seconds to say 10 milliseconds and
(2), from a few milliseconds to 20 microseconds. Figs. 1 and 2, with exposure time 7 =
10 seconds and 0.5 second, show the typical heating characteristics of the exposures to
the longer duration pulses. The curves in both figures are the temperature rise curves

at depth z = 0,40,80,120 and 160um, with &, = 0.167 24-, K = 1.16x107° —el -,

cm?2s)?

K= 1.11x10‘3%, and o = 840cm™1.

One notes in Fig. 2 the peaks occur from £ = 1.0at z = 0, to 1~ 1.5atz = 160um,
and the pulse shape is broadened as the temperature wave penetrétes into the material
(skin). This is indeed the case ,as we remember that the temperature wave propagates
with a velocity depending on the frequency of the temperature source and hence one
will see the dispersion or the broadening of a driving pulse.

The occurrence of the temperature peaks at various depths in Fig. 2 is shown in

Table 1.
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Table 1

TEMPERATURE PEAKS AT VARIOUS DEPTHS OF SKIN
SIMULANT EXPOSED TO LASER PULSE OF = 0.55 AND &, = 0.167

CAL
CM2S
Depth x (microns) | Time of Peak 1

0 1.0

40 1.02

80 1.10

120 1.30

160 1.50

6. Millisecond and Microsecond Pulses - Differences in the Two

Formulations and the Depths of Penetration
We now turn to irradiation of short pulses.
(a) 1 Millisecond Pulse

With a 1 ms pulse and energy flux density ® = 40 cal cm=2s7!, the surface
temperature rise at the end of the pulse is 18.8°C, and at z = 40um, the temperature
rise is 1.7°C. These are the two points plotted in Fig.3 joined by the heavy solid line
(1). With ®, = 16.7 cal cm™2s~, the surface temperature rise is 7.9°C, and at depth

8




z = 40um , the temperature rise is 0.7°C. These are joined by the heavy dashed line
(2) in the figure. These are the temperature rise values calculated from Eq (12), i.e.,
from the heat diffusion equation Eq. (9) with zero heat flux boundary condition Eq
(11) at x=0. The corresponding values at x=0 and 40um given by diffusion equation
Eq. (2) and the constant heat flux boundary condition Eq. (4) at x = 0 are 41.0°C
and 0.1°C respectively, for ®, = 40 cal cm~2s~1 (light solid lines (1') in Fig 3); and
17.1°C and 0.05°C respectively for ® = 16.7 cal cm~2s~! (light dashed line (2') in
Fig.3).

The conventions of the lines plotted here and in the following figures are: Solutions
with zero surface heat flux boundary condition are plotted in heavy solid lines (labeled

as (1)) and heavy dashed lines (labeled as (2)), solid lines for 40

cal :
—2- flux density,

and dashed lines for 16.7 C;;’zls. Solutions with constant surface heat flux boundary

conditions are plotted in light solid lines (1'), and light dashed lines (2'), again, solid
lines for 40 2 flux density, and dashed lines for 16.7 %%~

cm2s cm?2s”

It is to be noted that the values of the temperature rise, both at the surface and
underneath, given by the conventional constant surface heat flux formalism of Eqs
(2), (3) and (4), are higher than that by the more realistic and logical consideration
of Egs. (9), (10) and (11), i.e., the zero surface heat flux solution (12). In fact, as
the laser pulses become shorter and shorter, the difference becomes larger and larger,
and, as will be seen below, with a 20us laser pulse, the constant heat flux formalism
gives values ten times higher than that given by zero surface heat flux solution (12).
In the meantime, solution (12) shows that the laser beam penetrates much deeper
than that predicted by Egs (2), (3) and (4). For exposures of seconds duration, the
difference given by the two formalisms is small and may be neglected for all practical

purposes.




50°C

I ms Laser Pulse Exposure
45 Qo =40 cal cm 25 !
®o = 16.7 cal cm 25 !
40 — Heavy lines (1) & (2): Boundary condition %ﬂxwz )
Light lines (1') & (2'): Boundary condition %_1; x=u: Qo /-K)

35

30
&
£
% 25
Z
L
jm]
=
S 20
5
=

15 —

10

5 p—
0 i 1}
0 20 40 60 80 100 120 140

Depth in #M

Figure 3. Temperature rise of skin simulant at depths x = 0, 40, and 80 pm for laser
exposure of T = 1ms, ¢,=40 and 16.7 cal cm™?s™. Heavy lines are with §T/8x|,.,=0,
light lines with -KdT/0x|,.,= ¢, boundary conditions. The figure shows the much
higher surface temperature rise of a solid given by the constant surface heat flux solution
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25°C
400 us Laser Pulse Exposure
®o = 40 cal cm 25 !
(o = 16.7 cal cm 2s !
20— Heavy lines (1) & (2): Béundary condition %Hm: 0
Light lines (1") & (2): Boundary condition %%I = 0o /(-K)
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Figure 4. Temperature rise of a skin simulant at depths x = 0, 40, and 80 um for
laser exposure of © = 400 ps, ¢,=40 and 16.7 cal cm™s™. The figure shows the

much higher surface temperature rise of a solid given by the constant surface heat
flux solution.
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20°C

Temperature Rise in °C

100 us Laser Pulse Exposure
18 — ®o =40 cal cm 25 !
(o = 16.7 cal cm 25 !
16 — Heavy lines (1) & (2): Boundary condition %—}lxm: O
Light lines (1') & (2'): Boundary condition %_;le_o: G0 /-K)
14 —
12 —
10 —
8 —
6 —
4 —
2 —
0 ot T T T T T
0 20 40 60 80 100 120 140

Depth in uM
Figure S. Temperature rise of a skin simulant at depths x = 0, 40, and 80 um for laser

exposure of T = 100 ps, ¢,=40and 16.7 cal cm?s™. The figure shows the much higher
surface temperature rise of a solid given by the constant surface heat flux solution.
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10°C
50 us Laser Pulse Exposure
] (o =40 cal cm 25 !
®o =167 cal cm 25!
8 — Heavy lines (1) & (2): Boundary condition —g—-} s
Light lines (1") & (2'): Boundary condition _%_’L = §o /-K)
’ X X=0

Temperature Rise in °C

Figure 6. Temperature rise of a skin simulant at depths x =0, 40, and 80 um for
laser exposure of T = 50 ps, ,=40 and 16.7 cal cm?s?. The figure shows the
much higher surface temperature rise of a solid given by the constant surface heat

flux solution.
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10°C

Temperature Rise in °C

20 us Laser Pulse Exposure
] (o =40 cal cm 25 -!
Qo = 16.7 cal cm 25 !

8.0 — Heavy lines (1) & (2): Boundary condition -%—szo-- 0
Light lines (1') & (2): Boundary condition %%I = Qo /(-K)

X=0

i | I !

60 80 100 120 140

Depth in M
Figure 7. Temperature rise of a skin simulant at depths x = 0, 40, and 80um
for laser exposure of T =20 ps, ¢,=40and 16.7 cal cm™s™. The figure shows
the much higher surface temperature rise of a solid given by the constant surface
heat flux solution.

14




(b) 400us Pulse

For 400 us pulse of the same energy flux density ®; = 40 cal cm~2s~! , the tem-
perature rise calculated from Eq (12) at the surface is 8.9°C; at z = 40um , 0.5°C;
and at x = 80um,0.02°C (joined by the heavy solid lines in Fig 4). For ¢ = 16.7cal
cm~2s7'at depths x=0, 40um and 80um, T is 3.7°C, 0.2°C and 0.009°C respectively
(heavy dashed lines (2) in Fig 4).

Calculated from diffusion equation (2) and boundary condition (4) at x=0, the
corresponding values for ®, = 40 cal cm™2s~! are 25.4°C at x=0 and 1.5°x1074C at
z = 40um (joined by light solid lines (1), Fig 4); and for &, = 16.7 cal cm~2s7,
10.8°C and 6.4°x107°C at x=0 and 40pm respectively (joined by light dotted line
(2') in Fig 4). At 80 um, the temperature rises are zero (~10~17C) for both energy

flux densities @, and are not plotted in the Figure.
(c) 100us, 50us and 20us Pulses

The results given by the two formalisms for these short ps pulses and the same
energy flux densities ®, = 40cal cm~2s~'and 16.7 cal cm~2s~!, are shown in Tables
2 and 3 along with those of 1 ms and 400 us exposures. They are similarly plotted

in Figs 5, 6 and 7.
7. Discussion

As remarked above, the constant surface heat flux solution gives much too high a
temperature rise at and near the surface: For a ms pulse, it is higher by a factor of
41.0/18.9 or ~2.2; for a 400us pulse, by a factor of 2.8; for a 100us pulse, by a factor
of 4.9; for a 50us pulse, by a factor of 6.6; and for a 20us pulse, by a factor of 9.8,
than that given by the zero surface heat flux solution. On the other hand, the depth
of penetration of the laser pulse by the constant surface heat flux solution becomes

smaller and smaller as the pulse width decreases. This behavior as depicted by the

15




TABLE 2

TEMPERATURE RISE BY THE TWO DIFFERENT BOUNDARY
CONDITIONS* &, =40 —<2.

cm—2s

T x in uM | $o=40 cal cm~2s7!
(5 lo=0) (5% lo=—®0/K )
1 ms 0 18.9C 41.0C
40 1.69 0.12
80 0.06 7.2x1077
400ps | 0 8.93 25.4
40 0.53 1.5x10~*
80 0.02 0
100us 0 2.64 13.0
40 0.12 0
80 0.004 0
d0us 0 1.39 9.17
40 0.06 0
80 0.002 0
20us 0 0.59 5.80
40 0.02 0
80 8.0x10~* 0

* Column 3 is plotted as (1) in Figs 3-7
* Column 4 is plotted as (1') in Figs 3-7

16




TABLE 3

TEMPERATURE RISE BY THE TWO DIFFERENT BOUNDARY
CONDITIONS* &, = 16.7 —<&!

em=—2s

T x in M | ®¢ = 16.7 cal cm™?s7! _
(& lo=0) (2 Jo= ®o/K)
1 ms 0 7.98C 17.1C
40 0.71 0.05
80 0.03 3.0x1077
400us| 0 3.73 10.6
40 0.22 6.4x10~°
80 0.008 0
100us | 0 11.10 5.42
40 ’ 0.05 0
80 1.7x1073 0
50us | 0 0.58 3.83
40 0.02 0
80 8.4x10~4 0
20us 0 0.25 2.42
40 .01 0
80 3.3x10~* 0

* Column 3 is plotted as (2) in Figs 3-7
* Column 4 is plotted as (2') in Figs 3-7

constant surface heat flux solution is not surprising. In fact, the constant surface heat

flux boundary condition holds only in the ideal case in which the surface of the solid

17




is in contact with a constant temperature heat reservoir whose temperature follows
in every small (infinitesimal) step the surface temperature rise of the solid or, in the
case of irradiation, when the beam energy (laser) is totally converted to heat at the
surface®”. The penetration of heat in the latter case is due to diffusion given by Eq.
2 and controlled by the diffusion coefficient & = %. It is to be noted that although
in the figures (Figs 3 - 7), the temperature rise versus depth graphs are all drawn as

straight lines, they are actually concave .
8. CONCLUSION

The investigation of energy diffusion from a laser beam in a solid has produced
many useful results related to personnel protection against such radiation and many
other applications of the laser. It was presented also with the fundamental questions
regarding the boundary conditions of the diffusion equations, the zero surface heat
flux vs the constant surface heat flux, %:f- lz=0= 0 vs -K%%lmo = @y, at the boundary.
The constant surface heat flux boundary condition in the conventional solution of the
heat diffusion equation is shown to be unrealistic for a laser beam. Justification for
zero surface heat flux boundary condition for the laser irradiation is presented along
with the calculations for the temperature rise of a skin simulant exposed to the laser
irradiation. The former, (constant surface heat flux) solution gives the temperature
rise higher by a factor of 2.2, 2.8, 4.9, 6.6 and 9.8, for laser exposure of 1000, 400,
100, 50 and 20 ps, respectively, than that given by the diffusion equation with zero
surface heat flux boundary condition. The analysis holds for the general case of other

laser irradiated solids.
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